If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24d^2+64d+40=0
a = 24; b = 64; c = +40;
Δ = b2-4ac
Δ = 642-4·24·40
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16}{2*24}=\frac{-80}{48} =-1+2/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16}{2*24}=\frac{-48}{48} =-1 $
| x+26/9=5 | | 8.2-10.6c=-11.1c | | 5(8f+2)=250 | | 6x-12-16x=7x-12 | | 5h=4h+15 | | 353=f-19 | | 6p-12-16p=7p-12 | | 20.00+2.50h=14.00+4.00h | | 6p–12–16p=7p–12 | | -2-8k=-7k-19 | | 4x+70=5x-22 | | 4.25m=-80.75 | | -3d-8=-3d+20+4d | | n-571=161 | | 13-mm=8 | | 4(x+4)=-64 | | 23s=460 | | u-308=525 | | 7x-32-2x=33 | | 3x+1+1x=2+4x | | z-257=67 | | 10.00+2.50h=7.00+4.00h | | 80t+2-5t^2=0 | | -14.3q-1.61=-19.69-14.4q+16.55 | | 432=12z | | -4x+6=8x+18 | | 12=6(h+4) | | -8=3x+10 | | w-35=13 | | -18+18w=16w | | 6q+1=5q-11 | | b-80/9=85/7 |